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AbslrscL The random walk on the lwodimensional gasket fraclal has ken studied with 
various forms of mnstant bias fields applied using the Monte Carlo method. Cmuover 
from anomalous diffusion to drift was observed in the horizontal and upward bias Selds 
while m w e r  from anomalous 10 normal diffusion was found in the downward bias field. 
n e  scaling relation R ( B , , t )  - tk f ( B 8 t k )  was mnfimed and the scaling exponent 
of f(z) w z@ at large z was obtained as p = 1.175 +O.W for the horizontal bias 
field and p = 0.319 + 0.W2 for lhe downward bias field in good agreement with the 
theoretical work bj Parmndo a d. 

1. Introduction 

Diffusion under a constant external bias field has been studied on random fractals; 
for example, self-avoiding walks (Chowdhury 1985) and percolation clusters at the 
percolation threshold (Barma and Dhar 1983, Pandey 1984, Dhar 1984, Stauffer 
1985). In a uniform structure the effect of the bias field is to produce a drift in 
the direction of the applied field. In a random structure the constant bias field has 
two competing effects: the bias field induces drift in the direction of the field but 
also creates traps such as dangling ends and backbending in the percolation clusters 
(Dhar 1984, Ohtsuki and Keyes 1984, Stauffer 1985). The root mean square (RMS) 
displacement of the random walker under the constant bias field in a random structure 
behaves as R( B,,t) - 1’ with k < 1. At short times diffusion (IC < 1/2) dominates 
and at long times drift (IC = 1) dominates. The crossover from diffusion to drift 
behaviour occurs at the crossover time t* - 1/B, below the characteristic bias field 
B:. Above E; the trapping induced by the applied field leads to a logarithmic slow 
increase in the RMS displacement R ( t )  - (ln(1))’ of the random walk with y = 1 in 
the percolation cluster (Havlin and Ben-Avraham 1987). 

A random walk on a two-dimensional Sierpinski gasket with a bias field has been 
studied theoretically using scaling arguments by Stinchcombe (1985) and numerically 
using the Monte Carlo method by Kim et al (1987). They proved the existence of a 
bias-field-induced crossover from anomalous diffusion (k = 0.431) to drift (IC = 1) 
and the crossover time t’ was a decreasing function of the bias field. However, 
there was no logarithmic slowdown in the strong field due to the absence of the 
strong trapping geometry such as the dangling ends of the percolation cluster and no 
characteristic bias field B:. 

Recently Parrondo et al (1990) have studied a biased random walk on a two- 
dimensional gasket using renormalization procedures for the hopping probabilities and 
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waiting time. They obtained a different behaviour for the anisotropic diffusion for the 
downward applied field of figure 1 and proposed a scaling relation which described the 
crossover from anomalous diffusion to drift in the horizontal field and the crossover 
from anomalous diffusion to normal diffusion (k = 1/2) in the downward field. The 
scaling exponent P at long times was predicted to be 0 = (1- k ) / k  for the horizontal 
field and p = (1  - 2k)/2k for the downward field. In the present work we want to 
wnfirm the scaling relation and the directional dependence of the random walk to 
obtain the scaling exponent$ using Monte Carlo simulation. 

q //t iq downward Reld 

a-vertex 

.\/. 
I' r' - 

rightward field b-vertex 

Figure 1. Sierpinski Gasket (n = 3) and the 
directions of lhe wnstant bias field. 

Figure L The two 'ypes of vefifex on the Sierpinski 
gasket under the mnslanl bias field are associated 
with different hopping pmbabililier. 

2. Theory 

The random walk in fractals is described by the anomalous diffusion exponent 
k < 1/2. With no bias field 

R ( t )  - t k  (1) 

where R ( t )  is the RMS displacement from the local origin of the random walker and 
t is the time in units of the lattice wnstant and inverse jump rates (Bouchaud and 
Georges 1990a). (n the presence of the constant bias field the hopping probability 
depends on the direction of the bias field and the vertex types as in figure 2 In the 
short-time regime the response of the random walker is linear in the applied field 
(Bouchaud and Georges 1990a,b) 

R ( B , , t )  - Estk (2) 

where R( B,, 1 )  B, < kBT, i.e. random (or thermal) hopping probabilities are greater 
than the bias hopping, and the linear response always holds. In the long-time regime 
there is no general expression for the RMS displacement R ( B s , t ) .  In disordered 
lattices where the diffusion is normal one obtains an Einstein relation for a weak 
field (Bouchaud and Georges 199Oa) 

D 
R ( B , , t )  - -Est 

kB T 
(3) 
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where D is diffusion constant and IC, is Boltzmann’s constant. When the trapping 
of the structure under the bias field is not strong, we can apply the Pincus blob 
picture of a stretched polymer made of n-monomers (Pincus 1976, De Gennes 1985, 
Bouchaud and Georges 199oa). For a length scale less than CB the walk is considered 
in the same way as in the zero field case. For long times the energy gain due to the 
field is greater than k,T. Therefore, for the length scale larger than tB, the field 
dominates and the walk drifts along the direction of the field. The length scale tB 
(BCB = k,T) is the crossover length between the zero field ( B ,  = 0) and infinite 
field (B.  = 1) regimes. In the long-time regime 

(4) 
t 

R ( B $ , t )  - F t B  

where t* is the mean time needed to cross the length CB. If t* is finite, one obtains 
E, - tSk.  By using BFB = k,T one obtains the crmsover time as 

t* - (kBT/B, ) ’ / ‘ .  (5) 

This crossover time t’ is seen to decrease with increasing field and the anomalous 
diffusion exponent k gives the structural characteristics for crossover. The RMS 
displacement of the random walker at t > 1. becomes 

(6) 
l - l / k  R(B, , t )  - tCB - tB! ’ -k ) /k .  

The response is nonlinear in field Bs and shows drift behaviour at k = 1. Equation (6) 
may be applied to the horizontal and upward bias fields in the two-dimensional gasket 
fractal as the structure conforms to that of a stretched polymer. For downward bias 
of the gasket the response is different from that of the horizontal bias Reld in the 
long-time limit. Parrondo el a1 obtained the dependence of the RMS displacement 
for the downward bias field at long times. They found the renormalized hopping 
probabilities using the decimation method for the two types of vertex in figure 2 
and the fixed p i n t s  were q = T’ = 1/2 and T = p = p’ = 0. These k e d  points 
imply that the hopping probabilities in the direction of the bias field increase with 
increasing intensity of the bias field. That is, the probability ( 9 )  of escaping the a- 
vertex increases in the direction of the bias field and decreases in the other directions. 
At the b-vertex escape is less likely in the direction opposing the field and thus more 
likely along the directions perpendicular to the field. For a high field the waiting time 
at the a-vertex is negligible due to the strong hopping probability in the q direction. 
But the remaining time at the b-vertex at each step of the walk is very large because 
of the symmetric hopping probability in the r‘ direction. Hence the walk in the 
horizontal direction that the walker must perform before it moves from a b-vertex 
to an a-vertex corresponds to a one-dimensional random walk and one expects the 
mean time of escape to increase as a square of the length of the path. The RMS 
displacement derived by Parrondo d a1 (1990) was 

,L,”s,G, V I  I2 t\ -. - 1112 I YI R ( 1 - z k ) / z k  (7) 

The response to a downward field has a different field dependence compared with 
that for the horizontal and upward fields. Normal diffusion with k = 112 arises 
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(1-B/2)/4 (1+B/2)/4 ( 1 - ~ 6 B / 2 ) / 4  [l-&B/2)/4 

( l+B) /4  114 -%- 114 

(1 tB/2 ) /4  (1+&B/2)/4 (1+B&/2)/4 

(b) downward bias Aeld 

* (1-B)/4 

O-B/2)/4 

[a) horizontal bias field 

Figure 3. Anisotropic transilion probabilities enmuntered in the Sierpinski gasket under 
the “ a n t  tias field: (0) rightward tias field and (b) downward tias field. 

under fields at long time. The general response in the bias field can be described by 
a scaling form 

R(B,,t)  +- t”f(B$) (8) 
where f(0) = 1 and f(z) = I@ for large I. By the self-consistency check of the 
scaling relation of R( Es, t )  at long times the scaling exponent p can be determined 
(Parrondo ef af 1990). 

In the horizontal bias field, 

(9) 
1- k 
k p=- = 1.320. 

In the downward bias field, 

(10) 
1 - 2k 
2k p = - = 0.160. 

The scaling exponent p determines the field dependence of the RMS displacement at 
long times. 

3. Monte Carlo method 

We generated the two-dimensional Sierpinski gasket up to ten stages (n = 10). The 
total number of sites in a ddimensional Sierpinski gasket fractal is given (Hilfer 
and Blumen 1984) by N ,  = (1 + d)( l  + (1 + d ) ” ) / 2 .  In the twodimensional 
gasket of ten stages the total number of sites is 88575. The Monte Carlo method 
is employed to calculate the RMS displacement R( E,, 1 )  of the random walker. In 
the isotropic case, i.e. unbiased case, the hopping probabilities are equal for the four 
nearest neighbours at any vertex. In the anisotropic case, i.e. with the constant bias 
field, the hopping probabilities depend on the direction of the bias field. Figure 3 
shows the normalized hopping probabilities for each of six possible directions at a 
vertex. For the horizontal bias field in figure 3(u) the rightward hopping probabilities 
are enhanced by the bias field and for the downward bias field in figure 3(b) the 
downward bopping probabilities are enhanced. The intensity of the bias field was 
varied between zero (E ,  = 0) and infinity (B, = 1). Given a directional bias field 
E,, we have randomly chosen a starting site for a random walker (blind ants) and 
have performed the random walk by generating a sequence of random numbers. The 
RMs displacement R( E,, t )  of the random walker for a given E, was averaged over 
5000 starting local origins. The random walk was performed for the three directions 
of the bias field shown in figure 1 and various intensities of the bias field. 
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4 Results and discussions 

With no bias field we could reproduce the anomalous diffusion of the random walker 
represented by the lowest line in figure 4, from which we could obtain the anomalous 
diffusion exponent IC = 0.432. In figure 4 we show the calculated RMS displacement 
R( B,, t )  under the various righhvard bias fields. The crossover from anomalous 
to drift (IC = 1) is consistent with previous results (Stinchcombe 1985, Kim el al 

agreement with the prediction of equation (S). But there b no characteristic field B' 
above which there ir logarithmic diffusion R(B, > B*,d) Y In(t) of the percolation 
cluster. The absence. of the characteristic field B' means that there is no trapping 
geometry such as dangling ends or backbends (or cages). For the strong bias field 
the boundaly effect appears as a flat plateau, but it does not prevent the observation 
of crossover behaviour. Our simulation employs reflection at the boundaries: h both 
the horizontal and downward strong fields particles reach the boundaries too soon to  
observe the proper long-time behaviour. When the field was reversed to the leftward 
direction, we observed the Same response as for the rightward direction. 

!?-q. G"ssw;e: &=..e t' $ tG deciiease .*$h k,cieasb7g fi*!d, .which & L7 

t 

Figure 4 Log-log plol of the Rm displacement 
R(B,, 1 )  against lime under the various rightward 
" a n 1  bias fields of E, = 0.0, 0.1, 0.5, 0.7, 1.0 
from below. 1.0 from below. 

Plgui-e I Log-log plot of the RMS displacement 
If(&, 1 )  against time under !he various downward 
consIan1 bias fields of E,  = 0.0, 0.1, 0.3, 0.5, 0.7, 

Figure 5 shows the RMs displacement R( E, ,  t )  for various downward bias fields. 
The responses of the random walker are much slower than those for the horizontal 
bias field. The crossover from anomalous diffusion ( k  = 0.431) to normal diffusion 
( k  = 0.5) at long times and the decreasing crossover time 1' with increasing bias 
field, consistent With equation (5), are all observed. These numerical observations 
seem to support the renormalization group results of Parrondo el a1 (1990). In the 

(T ' )  at the b-vertex are enhanced strongly by the bias field and the opposing hopping 
probabilities such as p of the a-vertex and y' at the b-vertex are suppressed rapidly. 
Thus the remaining time at the a-vertex h very short and the motions of the random 
walkers are determined by T' of the b-vertex. Because the left and right hopping 

_I ^_> L:.." =-,A" .LA L......:.." ^-^L^L:I:... I.\ ^. .I.,. " _.̂ .. .̂.A .Le _ _ . L ^ L I I . -  
U U W l l W a l U  "la> IlCilUS 111C rlupplg pIVVdVIIILy cy) a1 LIIC a-VCILCX 4llU LllC plUUaDlllIy 
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probabilities r' are same, the random walkers follow quasi onedimensional diffusion 
in the direction perpendicular to the applied bias field. Therefore we can observe 
normal diffusion, R( E,, 1 )  - t1l2, in the case of the downward bias field. 

t 

Figure 6 Log-log plot of the R m  displacement 
R( B., t )  against time under the various venical 
" a n t  bias fields of B, = 0.1, 0.5, 1.0 from 
below. Tbe full curves are for upward fields and 
the dotted curves are for downward fields. The 
lowest one mmponds to no bias field. 

Fignre 6 sho.x the. response. for the upwar?. (fn!! cIITYes) and ?.nw.ward (rlotte.!! 
curves) bias fields of varying intensity. The RMS displacement R( B,,t) for the upward 
bias field is similar to the response in the horizontal bias field. We observed drift 
behaviour at long times and the crossover time t' also decreases with increasing 
field. A similar random walk between a horizontal field and upward field leads to 
a similar structural growth for the gasket fractal with the corresponding bias field. 
The different results for the two reversed vertical fields means that there is strong 
anisotropy induced by the bias field for the vertical direction in the two-dimensional 
gasket fractal. 

Figure 7 shows log-log plots of R ( B , , t ) / t k  against B,tk to test the scaling 
relation of equation (8) for rightward bias fields with k = 0.431. At short times the 
collapse of data for various fields confirmed the scaling function as f(0) = 1 below 
crossover time 1'. At long times the data increase linearly in the log-log plot, which 

the linear regime we find the scaling exponent p to be equal to 1.175 + 0.004 which 
is smaller than the prediction of equation (9). At longer times the data bend down, 
which corresponds to the flat plateau in figure 4 and is due to the boundary effects. 
The scaling exponent p shows that the field dependence of the RMS displacement 
R( E,, 1 )  is compatible with equation (6) applied for a horizontal field. The present 

the applied field by the RMS displacement. 
In figure 8 we attempt to show the scaling relation by a log-log plot of 

R( B,, l ) / t k  against Bstk for the downward bias field. Compared with the horizontal 
field case in figure 7 the collapse of data is not so good for long times. In particular 
a larger deviation is seen in the results for the infinite field (B ,  = 1) than in the data 
for lower fields. However, the scaling relation is observed to be f(0) = 1 at short 
times and f ( x )  = x@ at intermediate times. The scaling exponent p = 0.319 zk 0.02 
could be derived for intermediate times. This value of 0 is twice the prediction 
p = 0.160 of equation (10). The origin of this higher value for the scaling exponent 

proves fie sajing reiation of i(xj = X B  where 1: = ~ ~ i k ,  ~y ierji-qquatej fitting 

res.!! of sma!! ,6 mmpare?. FM! that of equa!io!! (9, hdiutes !ess dependence on 
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-0.51 I 
-1.0 0.0 1.0 2.1 

log(B,*) 

0 

Figure I. lhe scaling relation R(B, ,  t )  - Figure 8 lhe scaling relation R ( E , , t )  - 
f k f ( E , t r )  for the various rightward bias fields of t * f ( E , t * )  for the various downward bias fields 
E, = 0.1. 0.3, 0.5, 0.7, 1.0 from below. lhe scaling of B, = 0.1, 0.3, 0.5, 0.7, 1.0 from klav. l h h e  
exponent is obtained as p = 1.175 i 0.W. scaling exponent is oblained as p = 0.319 i 0.002. 

p may be that the waiting times at the a-vertex are not negligible compared with 
the waiting times at the b-vertex in field. The hopping probabilities T and q at the 
a-vertex and p' at the b-vertex in the field still have strong effects on the random 
walk At longer times the slope decreases slowly, which is not the boundary effect 
of figure 7. In the strong downward field particles starting from the top sites are 
found to take longer to reach the boundary than those of random origins. At B, = 1 
the slope of the scaling relation curve for the top starting particle tends to decrease 
at long times compared with that for the random starting particle, which implies a 
decreasing value for the exponent p closer to the theoretical value of Parrondo et a1 
(190). We speculate that a possible transition to p = 0.160 at very long times will 
be observed in a much larger gasket fractal than our present system. 

5. Conclusion 

The bias field dependence of the random walk shows varying responses for different 
Ullr..LI".ID U, L L l r  ",a) IlblU. 111 L L l r  II"IIL"LI-8 L L U U  "p.'Z1" UrlUI CIUI I""CI  ,,U,,, 

anomalous diffusion to drift was observed but crossover from anomalous to normal 
diffusion was seen in the downward field. The scaling relation in the horizontal field 
was well observed at both short and long times but in the downward field the scaling 
relation at long times was not so convincing. The time dependence of the biased 
random walk at long times was in good agreement with the theories of Parrondo et 
a1 (1990) hut the field dependence was not in full agreement with the results of the 
same theory. To observe the scaling exponent properly in a strong downward bias 
field in the region of 2 >> 1 it seems to be necessary to let the particles start at the 
top in a larger gasket of n > 10 and increase the Monte Carlo steps 1. 

A:-an+:nno n< r h n  h:or a n l A  1" +ha I r n r i v n m l n l  n n A  ......m r.4 f i o I A r  -nco-.,a- C--- 
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