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Abstract. The random walk on the two-dimensional gasket fractal has been studied with
various forms of constant bias fields applied using the Monte Carlo method. Crossover
from anomalous diffusion to drift was observed in the horizontal and upward bias fields
while crossover from anomalous to normal diffusion was found in the downward bias field.
The scaling relation R(B,,1) ~ t* f{B.t*) was confirmed and the scaling expouent
of f(z) ~ zf at large r was oblained as # = 1.175 £ 0.004 for the horizontal bias
field and 8 = 0.319 £ 0.002 for the downward bias field in good agreement with the
theoretical work by Parrendo er al.

1. Introduction

Diffusion under a constant external bias field has been studied on random fractals;
for example, self-avoiding walks (Chowdhury 1985) and percolation clusters at the
percolation threshold (Barma and Dhar 1983, Pandey 1984, Dhar 1984, Stauffer
1985). In a uniform structure the effect of the bias field is to produce a drift in
the direction of the applied field. In a random structure the constant bias field has
two competing effects: the bias field induces drift in the direction of the field but
also creates traps such as dangling ends and backbending in the percolation clusters
(Dhar 1984, Ohtsuki and Keyes 1984, Stauffer 1985). The root mean square (RMS)
displacement of the random walker under the constant bias field in a random structure
behaves as R(B,,t) ~ t* with k < 1. At short times diffusion (k < 1/2) dominates
and at long times drift (k = 1) dominates. The crossover from diffusion to drift
behaviour occurs at the crossover time t* ~ 1/B, below the characteristic bias field
B;. Above B; the trapping induced by the applied field leads to a jogarithmic slow
increase in the RMS displacement R(t) ~ (In{1)}” of the random walk with v = 1 in
the percolation cluster (Havlin and Ben-Avraham 1987).

A random walk on a two-dimensional Sierpinski gasket with a bias field has been
studied theoretically using scaling arguments by Stinchcombe (1985) and numerically
using the Monte Carlo method by Kim e af (1987). They proved the existence of a
bias-field-induced crossover from anomalous diffusion (k = 0.431) to drift (k = 1)
and the crossover time t* was a decreasing function of the bias field. However,
there was no logarithmic slowdown in the strong field due to the absence of the
strong trapping geometry such as the dangling ends of the percolation cluster and no
characteristic bias field B;.

Recently Parrondo er @/ (1990) have studied a biased random walk on a two-
dimensional gasket using renormalization procedures for the hopping probabilities and
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waiting time. They obtained a different behaviour for the anisotropic diffusion for the
downward applied field of figure 1 and proposed a scaling relation which described the
crossover from anomalous diffusion to drift in the horizontal field and the crossover
from anomalous diffusion to normal diffusion (k = 1/2) in the downward field. The
scaling exponent 3 at long times was predicted to be 3 = (1-k)/k for the horizontal
field and 3 = (1 - 2k)/2k for the downward field. In the present work we want to
confirm the scaling relation and the directional dependence of the random walk to
obtain the scaling exponents using Monte Carlo simulation.
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Figore 1. Sierpinski Gasket (n = 3) and the Figure 2. The two types of vertex on the Sierpinski
directions of the constant bias field. gasket under the constant bias field are associated
with different hopping probabilities.

2. Theory

The random walk in fractals is described by the anomalous diffusion exponent
k < 1/2. With no bias field

R(t) ~ t* (1)

where R(t) is the RMS displacement from the local origin of the random walker and
t is the time in units of the lattice constant and inverse jump rates (Bouchaud and
Georges 1990a). I\n the presence of the constant bias field the hopping probability
depends on the direction of the bias field and the vertex types as in figure 2. In the
short-time regime the response of the random walker is linear in the applied field
(Bouchaud and Georges 1990a,b)

R(B,,t) ~ B,tF @

where R(B,,1)B, < kgT), i.e. random (or thermal) hopping probabilities are greater
than the bias hopping, and the linear response always holds. In the long-time regime
there is no general expression for the RMs displacement R(B,t). In disordered
lattices where the diffusion is normal one obtains an Einstein relation for a weak
field (Bouchaud and Georges 1990a)

D

R(Bs9t) ~ kBT

Bt 3
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where D is diffusion constant and kg is Boltzmann's constant. When the trapping
of the structure under the bias field is not strong, we can apply the Pincus blob
picture of a stretched polymer made of n-monomers (Pincus 1976, De Gennes 1985,
Bouchaud and Georges 1990a). For a length scale less than &g the walk is considered
in the same way as in the zero field case. For long times the energy gain due to the
field is greater than kpT. Therefore, for the length scale larger than &g, the field
dominates and the walk drifts along the direction of the field. The length scale {p
(BEg = kgT) is the crossover length between the zero field (B, = 0) and infinite
field (B; = 1) regimes. In the long-time regime

R(B,,1) ~ = £p @

where t* is the mean time needed to cross the length £5. If t* is finite, one obtains
ép ~ t*F. By using Bégp = kpT one obtains the crossover time as

t* ~ (kgT/ B,)V*. )

This crossover time £* iS seen to decrease with increasing field and the anomalous
diffusion exponent k gives the structural characteristics for crossover. The RMS
displacement of the random walker at ¢ > ¢* becomes

R(B,, 1) ~ tég /% ~ tBO-R/K, ©)

The response is nonlinear in field B, and shows drift behaviour at & = 1. Equation (6)
may be applied to the horizontal and upward bias fields in the two-dimensional gasket
fractal as the structure conforms to that of a stretched polymer. For downward bias
of the gasket the response is different from that of the horizontal bias field in the
long-time limit. Parrondo et al obtained the dependence of the RMS displacement
for the downward bias field at long times. They found the renormalized hopping
probabilities using the decimation method for the two types of vertex in figure 2
and the fixed points were ¢ = ' = 1/2 and r = p = p’ = 0. These fixed points
imply that the hopping probabilities in the direction of the bias field increase with
increasing intensity of the bias field. That is, the probability (¢) of escaping the a-
vertex increases in the direction of the bias field and decreases in the other directions.
At the b-vertex escape is less likely in the direction opposing the field and thus more
likely along the directions perpendicular to the field. For a high field the waiting time
at the a-vertex is negligible due to the strong hopping probability in the ¢ direction,
But the remaining time at the b-vertex at each step of the walk is very large because
of the symmetric hopping probability in the r' direction. Hence the walk in the
horizonta) direction that the walker must perform before it moves from a b-vertex
to an a-vertex corresponds to a one-dimensional random walk and one expects the
mean time of escape to increase as a square of the length of the path. The RMS
displacement derived by Parrondo ef al (1990) was

pro ) . 1172 p(1-2k)/2k -
L Lrgy b J © F=M . (7

The response to a downward field has a different field dependence compared with
that for the horizontal and upward fields. Normal diffusion with k = 1/2 arises
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Figure 3. Anisotropic transition probabilities encountered in the Sierpinski gasket under
the constant bias field: (2) rightward bias field and (b} downward bizs field,

under fields at long time. The general response in the bias field can be described by
a scaling form

R(Bsa t) ~ tkf(Bstk) (8)

where f(0) = 1 and f(z) = =? for large z. By the self-consistency check of the
scaling relation of R(B,, 1) at long times the scaling exponent 3 can be determined
(Parrondo et al 1990).

In the horizontal bias field,

1-k
A= —— =130 ®)
In the downward bias field,
1 —_ [
6= Zk?k = 0.160. (10)

The scaling exponent § determines the field dependence of the RMs displacement at
long times.

3. Monte Carlo method

We gencrated the two-dimensionai Sierpinski gasket up to ten stages (n = 10). The
total number of sites in a d-dimensional Sierpinski gasket fractal is given (Hilfer
and Blumen 1984) by N, = (1 + d)(1 4+ (14 d)")/2. In the two-dimensional
gasket of ten stages the total number of sites is 88575. The Monte Carlo method
is employed to calculate the RMS displacement R(B,,t) of the random walker. In
the isotropic case, i.e. unbiased case, the hopping probabilities are equal for the four
nearest neighbours at any vertex. In the anisotropic case, i.e. with the constant bias
field, the hopping probabilities depend on the direction of the bias field. Figure 3
shows the normalized hopping probabilities for each of six possible directions at a
vertex. For the horizontal bias field in figure 3(a) the rightward hopping probabilities
are enhanced by the bias field and for the downward bias field in figure 3(b) the
downward hopping probabilities are enhanced. The intensity of the bias field was
varied between zero (B, = 0) and infinity (B, = 1). Given a directional bias field
B,, we have randomly chosen a starting site for a random walker (blind ants) and
have performed the random walk by generating a sequence of random numbers. The
RMS displacement R(B,,t) of the random walker for a given B, was averaged over
5000 starting local origins. The random walk was performed for the three directions
of the bias field shown in figure 1 and various intensities of the bias field.
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4. Results and discussions

With no bias field we could reproduce the anomalous diffusion of the random walker
represented by the Jowest line in figure 4, from which we could obtain the anomalous
diffusion exponent k = 0.432. In figure 4 we show the calculated RMS displacement
R(B,,t) under the various rightward bias fields. The crossover from anomalous
to drift (k¢ = 1) is consistent with previous results (Stinchcombe 1985, Kim et al
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agreement with the prediction of equation (5). But there is no characteristic field B*
above which there is logarithmic diffusion R( B, > B*,t) ~ In(t) of the percolation
cluster. The absence of the characteristic field B* means that there is no trapping
geometry such as dangling ends or backbends (or cages). For the strong bias field
the boundary effect appears as a flat plateau, but it does not prevent the observation
of crossover behaviour. Our simulation employs reflection at the boundaries. In both
the horizontal and downward strong fields particles reach the boundaries too soon to
cbserve the proper long-time behaviour. When the field was reversed to the leftward
direction, we observed the same response as for the rightward direction,
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Figure 4 Log-log piot of the RMS displacement
R(By, t) against time under the various rightward
constant bias fields of By, = 0.0, 0.1, 0.5, 0.7, 1.0

Figure 5 Log-log plot of the RMs displacement
R( B, t) against time under the various downward
constant bias fields of B = 0.0, 0.1, 03, 0.5, 0.7,

from below. 1.0 from below.

Figure 5 shows the RMs displacement R(B,,t) for various downward bias fields.
The responses of the random walker are much slower than those for the horizontal
bias field. The crossover from anomalous diffusion (k = 0.431) to normal diffusion
(k = 0.5) at long times and the decreasing crossover time t* with increasing bias
field, consistent with equation (5), are all observed. These numerical observations
seem to support the renormalization group results of Parrondo er al (1990) In the
downward bias fields the uﬁppnﬁg pi'Guauuu_y (q) at the a-veriex and the prUdUulIy
(r') at the b-vertex are enhanced strongly by the bias field and the opposing hopping
probabilities such as p of the a-vertex and p’ at the b-vertex are suppressed rapidly.
Thus the remaining time at the a-vertex is very short and the motions of the random
walkers are determined by r' of the b-vertex. Because the left and right hopping
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probabilities ' are same, the random walkers follow quasi one-dimensional diffusion
in the direction perpendicular to the applied bias field. Therefore we can observe
normal diffusion, R(B;,t) ~ t/2, in the case of the downward bias field.
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Figure & Log-log plot of the Rms displacement
R(Bs, t) against time under the various vertical
constant bias fields of B; = 0.1, 0.5, 1.0 from

) ) | below. The full curves are for upward fields and
109 10! 10? 10° 10° the dotted curves are for downward fields. The
t lowest one corresponds to no bias field.

Fioure A cshows the resnonse for the unward {fu!I curves) and downward {(dotted
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curves) bias fields of varying intensity. The RMS dlsplacement R( B,,t) for the upward
bias field is similar to the response in the horizontal bias field. We observed drift
behaviour at long times and the crossover time t* also decreases with increasing
field. A similar random walk between a horizontal field and upward field leads to
a similar structural growth for the pasket fractal with the corresponding bias field.
The different results for the two reversed vertical fields means that there is strong
anisotropy induced by the bias field for the vertical direction in the two-dimensional
gasket fractal.

Figure 7 shows log-log plots of R(B,,t)/t* against Bt* to test the scaling
relation of equation (8) for rightward bias fields with k = 0.431. At short times the
collapse of data for various fields confirmed the scaling function as f(0) = 1 below
crossover time ¢*. At long times the data increase linearly in the log-log plot which
proves the scaling relation of f(z) = = where « = B,t*. By least-squares fitting in
the linear regime we find the scaling exponent 3 to be equal to 1.175 + 0.004 which
is smaller than the prediction of equation (9). At longer times the data bend down,
which corresponds to the flat plateau in figure 4 and is due to the boundary effects.
The scaling exponent 8 shows that the field dependence of the RMs displacement
R(B,,t) is compatible with equation (6) applied for a horizontal field. The present
result of small 8 compared with that of equation (9) indicates less dependence on
the applied ﬁeld by the RMS displacement.

In figure 8 we attempt to show the scaling relation by a log-log plot of
R(B,,t)/t* against B,t* for the downward bias field. Compared with the horizontal
field case in figure 7 the collapse of data is not so good for long times. In particular
a larger deviation is seen in the results for the infinite field (B, = 1) than in the data
for lower fields. However, the scaling relation is observed to be f(0) = 1 at short
times and f(z) = =” at intermediate times. The scaling exponent § = 0.319 £ 0.02
could be derived for intermediate times. This value of 3 is twice the prediction
3 = 0.160 of equation (10). The origin of this higher value for the scaling exponent
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Figore 7. The scaling relation R(By,t) ~

t* f( Bst*) for the various rightward bias fields of
By = 0.1, 03, 0.5, 0.7, 1.0 from below. The scaling
exponent is obtained as £ = 1.175 £ 0.004.
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Figure B  The scaling relation R(Bs,t) ~

t* f(Bst¥) for the various downward bias fields
of By = 0.1, 0.3, 05, 0.7, 1.0 from below. The
scaling exponent is obtained as § = 0.319 £ 0.002.

3 may be that the waiting times at the a-vertex are not negligible compared with
the waiting times at the b-vertex in field. The hopping probabilities » and g at the
a-vertex and p’ at the b-vertex in the field still have strong effects on the random
walk. At longer times the slope decreases slowly, which is not the boundary effect
of figure 7. In the strong downward ficld particles starting from the top sites are
found to take longer to reach the boundary than those of random origins. At B, = 1
the slope of the scaling relation curve for the top starting particle tends to decrease
at long times compared with that for the random starting particle, which implies a
decreasing value for the exponent 3 closer to the theoretical value of Parrondo et al
(1990). We speculate that a possible transition to 8 = 0.160 at very long times will
be observed in a much larger gasket fractal than our present system.

§. Conclusion

The bias field dependence of the random walk shows varying responses for different
directions of the bias field. In the horizontal and upward fields crossover from
anomalous diffusion to drift was observed but crossover from anomalous to normal
diffusion was seen in the downward field, The scaling relation in the horizontal field
was well observed at both short and long times but in the downward field the scaling
relation at long times was not so convincing. The time dependence of the biased
random walk at long times was in good agreement with the theories of Parrondo et
al (1990) but the field dependence was not in full agreement with the results of the
same theory. To observe the scaling exponent 3 properly in a strong downward bias
field in the region of = > 1 it seems to be necessary to let the particles start at the
top in a larger gasket of n > 10 and increase the Monte Carlo steps t.



5830 J-W Lee et al
Acknowledgments

This work was supported in part by the Korea Science and Engineering Foundation
(Centre for Thermal and Statistical Physics).

References

Barma M and Dhar D 1983 J Phys. C: Solid State Phys. 16 1451

Bouchaud J P and Georges A 1990a Phys. Rep. 195 127

— 1990b J. Phys. A: Math, Gen. 23 11003

Chowdhury D 1985 I Phys. A: Math. Gen. 18 L761

De Gennes P G 1985 Scaling Concepts in Polymer Physics (Cornell: Cornel! University Press)
Dhar D 1984 J Phys. A: Math. Gen. 17 1257

Havlin S and Ben-Avraham D 1987 Adw Phys. 36 695

Hiffer R and Biumen A 1984 [ Phys. A: Math. Gen. 17 L537

Kim G O, Oh J H and Kim J-J {987 J Phys. A: Math. Gen. 20 1905

Ohtsuki T and Keyes T 1984 Phys. Rev Lent. 52 1177

Pandey R B 1984 Phys. Rev: B 30 489

Parrondo J M R, Martinez H L, Kawai R and Lindenberg K 1990 Phys. Rev A 42 723
Pincus P 1976 Macromolecules 9 386

Stauffer $ 1985 J Phys. A: Math. Gen. 18 1827

Stinchcombe R B 1985 [ Phys. A: Math Gen. 18 L591



